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ABSTRACT

Unusually hot weather is a major concern to public health as well as other systems (e.g., ecological,

economical, energy). This study utilized spatially continuous and homogenized observational surface climate

data to examine changes in the regularity of heat waves in the continental United States. This included

the examination of heat waves according only to daytime temperatures, nighttime temperatures, and both

daytime and nighttime temperatures. Results confirmed a strong increase in the prevalence of heat waves

between the mid-1970s and the dataset end (2015), and that increase was preceded by a mild decrease since

the dataset beginning (1948). Results were unclear whether the prevalence of nighttime or simultaneous

daytime–nighttime heat waves increased the most, but it was clear that increases were largest in the summer.

The largest gains occurred in the West and Southwest, and a ‘‘warming hole’’ was most conspicuous in the

northern Great plains. The changes in heat wave prevalence were similar to changes in the mean tempera-

tures, and more so in the daytime heat waves. Daytime and nighttime heat waves coincided with one another

more frequently in recent years than they did in the 1970s. Some parts of the United States (West Coast) were

more likely than other parts to experience daytime and nighttime heat waves simultaneously. While linear

trends were not sensitive to the climate dataset, trend estimation method, or heat wave definition, they were

mildly sensitive to the start and end dates and extremely sensitive to the climate base period method (fixed in

time or directly preceding any given heat wave).

1. Introduction

Heat waves are a substantial concern to the United

States. This was evidenced by the passing of theWeather

Research and Forecasting Innovation Act of 2017

(Public Law 115-25; H.R. 353), which directed the

NOAA/National Weather Service (NWS) to prioritize

subseasonal forecasts of heat waves. Heat waves are dam-

aging to infrastructure (McGregor et al. 2007), stressors of

agriculture (Gu et al. 2008) and livestock (Mader 2003;

Howden and Turnpenny 1997; Reeves and Bagne 2016),

and burdens on several systems ranging from ecological

(Smith 2011) and public health (Knowlton et al. 2009) to

energy (Isaac and vanVuuren 2009). According to theU.S.

National Hazard Statistics of the NWS (http://www.nws.

noaa.gov/om/hazstats.shtml), ‘‘heat’’ is a leading cause of

weather fatalities. A well-known 1995 heat wave increased

the number of deaths by 147% (over normal) in Chicago

(Whitman et al. 1997), and a 44-day long heat wave in 2010

in the city of Moscow, Russia, increased the number of

deaths by 83% over that period (;11000 excess deaths;

Shaposhnikov et al. 2014). Deaths related to heat are more

likely to occur within vulnerable sectors of the population

such as minorities, the elderly, the young, those taking

certain medications, the economically disadvantaged, and

the socially isolated (Bao et al. 2015). Fortunately, heat

health warning systems have been shown to be highly ef-

fective in mitigating impacts on public health (Lowe et al.

2011; Toloo et al. 2013).

Global temperatures in the twentieth and twenty-first

centuries have generally been increasing (Hansen et al.

2012). The earlier part of the twentieth century was a

warming period (Knappenberger et al. 2001), and the

middle portion (1940–69) was a mild cooling period

(Menne et al. 2009; DeGaetano and Allen 2002). Since

then, steady warming has occurred (Knappenberger

et al. 2001; Hansen et al. 2012; Rohde et al. 2013a). The

bulk of the warming since the 1970s was manifested in a

decrease in the cold-tail temperature extremes (Meehl

et al. 2009), high-latitude warming (Cohen et al. 2014),

and nighttime and winter warming (Wang et al. 2009).

However, the frequency of hot weather during the warmCorresponding author: EvanM. Oswald, evan.oswald@noaa.gov
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season has also been increasing (Peterson et al. 2013). A

general increase in the frequency of extremely hot tem-

peratures during the recent warming period is well agreed

upon, but variability in the literature of the spatial pattern

exists due to the sensitivity to time period, meteorologi-

cal/biometeorological variables, daily extrema and/or hot

weather definition, statistical methodology, climate data

utilized, and time of year.

Notably, the United States has what is termed a

‘‘warming hole’’ in its interior, varying from the northern

Great plains and middle Mississippi Valley to the south-

eastern United States (excluding Florida) depending on the

time period, time of year, and daily extrema (Robinson et al.

2002; Wu et al. 2012; Meehl et al. 2012; Oswald and Rood

2014). The warming hole is most pronounced in the winter.

The exact combination of mechanisms causing the U.S.

warming hole is unsettled, but it likely involves changes in

low-level temperature flux convergence (Meehl et al. 2012),

the Great plains low-level jet (Pan et al. 2004), and Pacific

Ocean sea surface temperatures (Robinson et al. 2002).

Most examinations of the large-scale historical

changes in heat waves diagnose heat waves based on

percentile threshold exceedence (Grotjahn et al. 2016).

Percentiles, as opposed to absolute temperatures, allow

for what qualifies as ‘‘unusually hot’’ to vary spatially

and therefore accommodate the human aspect of accli-

matization to their climates. For this reason, absolute

thresholds are more likely to be utilized in regional and

local studies. Percentiles quantify how a given temper-

ature relates to past temperatures, usually a 30-yr period

called the ‘‘climate base.’’ All known studies regarding

heat wave trends that utilize percentiles hold this period

constant in time. This is done in order to establish a

reference by which an examination of temporal change

is possible. Conversely, the climate base period should

be as relevant as possible to any given year since the

percentiles are supposed to reflect what the population

is accustomed to experiencing—in other words, the

years that directly preceded the heat wave. Percentiles

based on such a climate base period would therefore

account for what the population is accustomed to ex-

periencing both spatially as well as temporally.

The benefits of understanding changes in heat waves

are not limited to the summer season (June–August).

Nonetheless, most studies scrutinize the past changes in

hot weather either in the summertime or all year around.

While the summer is the time of year associated with

human health impacts, heat waves during other seasons

also have impacts. For instance, heat waves in the late

spring are of particular interest to public health officials

(Baccini et al. 2008). Heat waves during the early spring

can lead to devastation in agriculture systems from

subsequent frosts (Gu et al. 2008). Winter heat waves

(i.e., thaw events) in northern states have been shown to

be disruptive to trees (e.g., Bourque et al. 2005).

Another lesser-examined aspect of heat waves is the

difference in heat waves focusing on the opposing and/or

combined daily extrema: daytime, nighttime, and simul-

taneous daytime–nighttime heat waves. These different

heat waves hold varying levels of importance to different

regions and systems. Periods with both extremely high

nighttime and daytime temperatures generally are of

more concern for public health officials (Poumadère et al.
2005). Conversely, in the Southwest and southern Great

plains, daytime temperature–based heat waves may be

more strongly linked to public health impacts (Kalkstein

and Davis 1989). In the United States, outside of the

Pacific Northwest where Bumbaco et al. (2013) analyzed

them, the relationships between these different heat

waves are not well understood. The Chen and Li (2017)

examination of heat wave types in China demonstrated

spatiotemporal changes in the various heat wave types.

Previous U.S. studies that have examined differences in

which daily extremes were elevated (Oswald and Rood

2014; Smith et al. 2013; Chen and Li 2017; Bumbaco et al.

2013) demonstrated disparity in both mean characteris-

tics and trends.

In this study, a long-term homogenized dataset with a

daily time step was leveraged to demonstrate the

changes in the spatiotemporal prevalence of heat waves.

Changes since 1948 were examined, but the focus was on

changes since 1978. This study sought to answer three

overarching questions about heat waves:

1) How has the prevalence of heat waves changed

through time?

2) Was there a substantial sensitivity in that change to

the climate base period methodology?

3) Finally, what were the relationships between differ-

ent types of heat waves and the relationships with

their corresponding statistical moments?

Explicit examination of the driving mechanisms will be

the focus of subsequent studies.

2. Materials and methods

a. Datasets

The climatological data used in this study were from

the Topography Weather (TopoWx, version 2015.1)

dataset (Oyler et al. 2015a). TopoWx was spatially and

temporally continuous over the continental United States

(CONUS) with a daily temporal resolution and a roughly

800-m native spatial resolution. The TopoWx dataset

spanned the 1948–2015 period at time of acquisition

(June 2016). All dates throughout the year were utilized

in this study. TopoWx data undergo quality control and
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consist of only daily maximum and minimum tempera-

tures. The TopoWx dataset has primarily been used in

ecological and streamflow studies in topographically

complex regions (e.g., Giersch et al. 2015; Kampf and

Lefsky 2016). It has also supported regional studies

quantifying historical climate changes (e.g., Oyler et al.

2015b; Sepulveda et al. 2015) but has not yet been used to

examine national-scale changes in heat waves.

This study chose TopoWx because it provides daily,

homogenized data over a long period of time. To date,

no formally homogenized dataset has been employed to

examine the changes in heat waves in the United States.

Since homogenization removes nonclimatic changes in

observational records, it is an essential step in estimating

trends. TopoWx is the only homogenized dataset in the

peer-reviewed literature covering theUnited States with

daily time steps. TopoWx employs a widely used and

accepted homogenizationmethod (Menne andWilliams

2009) called the ‘‘pairwise homogenization’’ method.

This corrects a wide range of issues including urbani-

zation, time of observation bias, and instrumentation

change. To create a truly homogeneous gridded dataset,

the stations used (to create the grids) do not vary over

the temporal domain of the dataset. Because of its ho-

mogeneity TopoWx is preferable for the assessment of

changes over time to other popular gridded daily climate

datasets, such as the updated Maurer dataset (Livneh

et al. 2013), the PRISM ‘‘AN81D’’ dataset (Daly et al.

2008; PRISM Climate Group 2016), and Daymet data-

sets (Thornton et al. 1997, 2017). Coincidentally, the

spatial resolution of TopoWx is also very fine—more so

than any other known climate product spanning the

United States. Such spatial resolution was achieved by

leveraging spatial covariates, including monthly clima-

tologies of satellite-observed daytime and nighttime

land skin temperatures that were shown to improve

gridded interpolations of near-surface air temperatures

(particularly daily minimum temperatures; Oyler et al.

2016). The underlying station observations originate

from the Global Historical Climatology Network-Daily

(Menne et al. 2012), the Remote Access Weather Sta-

tion (RAWS) network (Zachariassen et al. 2003), and

the Snowpack Telemetry (SNOTEL) network (see

https://www.wcc.nrcs.usda.gov/climate/index.html).

Usage of gridded data products was required because

of their spatial continuity. Spatial continuity was critical

to this study because it sought to synergistically assess

the changes in the spatial and temporal aspects of heat

waves. Since spatial analyses of heat waves are sorely

lacking in the literature, they constitute a major contri-

bution to the understanding of heat waves. It is ac-

knowledged that gridded products do not represent

temperature extremes as well as individual station

records can because of spatial smoothing. This study’s

utilization of percentiles in diagnosing heat waves, in-

stead of absolute values, may lessen this limitation’s

impact. Moreover, this study only examines regional-

scale features.

We also acknowledge that limitations of the TopoWx

dataset exist. For instance, the homogenization algorithm

detects and corrects for changes only in the first statistical

moment but not the higher moments. We also concede

that in order to maintain a consistent set of stations

through time, the infilling routine is heavily utilized in the

TopoWx dataset. For instance, the many stations that do

not span the 1948–2015 period of the dataset are extended

to span it using the infilling method.

The climate data were aggregated from roughly 800m

to 0.258 latitude and longitude. This was done because of

computational limitations. This aggregation was a sim-

ple mean of the gridcell values within the new gridcell

domain. Roughly 900 grid cells of high-resolution data

go into the mean calculation of each resulting grid cell.

This aggregation resulted in a total of 12 991 grid cells

across the CONUS.

While TopoWx is the only peer-reviewed homoge-

nized climate dataset with daily time steps that covers

the United States, another homogenized dataset, the

Berkeley Earth Surface Temperature (BEST) dataset

(Rohde et al. 2013a), does have an experimental version

with daily time steps on 18 latitude grids (from http://

berkeleyearth.org/data/). The BEST dataset is homog-

enized in a profoundly different way than the TopoWx

dataset is (Rohde et al. 2013b). Analysis of the BEST

dataset was not a focus of this study but was rather uti-

lized to provide an estimate of the sensitivity (or lack

thereof) of our results to the dataset. Additionally, there

exists an ungridded version of the TopoWx dataset. This

version of the dataset was utilized to examine the sen-

sitivity of the results to gridding, which naturally sup-

presses extreme values in records.

To put trends of the heat wave percentage (HW%)

metric into the context of more traditional climate

measures, the daily maximum and minimum tempera-

tures from the TopoWx dataset, as well as the diurnal

temperature range, were used. The latter was taken as

the raw difference of the daily maximum and minimum

temperatures. Each year both the mean and variance of

the daily maximum and minimum temperatures, as well

as the diurnal temperature range, were calculated.

b. Data processing

This study identified heat waves based on the exceed-

ance of percentile thresholds of air temperatures. Heat

index values were not used for two reasons: 1) a desire to

focus on the physical changes of the air temperatures
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within the climate system and 2) avoidance of adding

uncertainty from atmospheric moisture records. Abso-

lute values were not opted for as thresholds because they

are only regionally, and seasonally, applicable.

Percentiles of air temperatures were estimated em-

pirically by calculating the percentage of a sample of

temperatures corresponding to that calendar date that

was equal to and/or cooler than any given date’s tem-

perature. These climate base samples consisted of the

observed temperatures at that grid cell within a 9-day

calendar window (centered on any given calendar date)

during a 30-yr period. Therefore, climate base samples

consisted of 270 (9 3 30) values.

Three types of heat waves were separately quantified

and assessed in this study: daily maximum–based waves

(Tmax), daily minimum–based waves (Tmin), and both/

simultaneous daily maximum and minimum–based waves

(Tmnx). For each type of heat wave two consecutive dates

over the 92.5 percent level were required. For Tmax- and

Tmin-type waves, the opposing daily extreme temperature

was required to exceed the 50 percent level. For Tmnx-type

waves, both daily extremes were required to exceed the

92.5 percent level. The 92.5 percent level was opted for

because higher percentiles resulted in distributions prone to

sampling errors (not shown) and lower threshold samples

were less representative of the upper tail of the tempera-

ture distribution (Zhang et al. 2012). A longer-duration

requirement was not opted for because the resulting

reduction in sample size was prone to sampling errors.

To quantify the changes in extreme heat over the

1948–2015 period, HW% was calculated each year. This

metric was taken as the percent of calendar dates and grid

cells that experienced a heat wave for any given year. This

was then calculated over the entire year, during the

summer, and for each month. Notably, it quantifies the

portion of dates and grid cells experiencing a heat wave

each year and does not measure heat wave intensity,

persistence, duration, or spatial extent. It is an admittedly

simplistic measure, but the disparities in the temporal

changes between different heat wave characteristics can

also be trivial (e.g., Oswald and Rood 2014).

c. Analysis methodology

The analysis began with a cursory evaluation of heat

waves as they are defined herein: percent of the dates

heat waves were present, their typical spatial coverage

of the United States, and the coverage during very hot

episodes. Time series of the national HW% for all three

heat wave types were examined. Climatological normals

were examined for various time periods and each

month. Time series of the national mean and variance of

the daily minimum and maximum temperatures were

also examined for relationships with the HW%.

Linear decadal trends in HW% were estimated over

the 1978–2015 period. This period was chosen because

1) 1978 is the first year of the trailing base period per-

centiles; 2) preliminary analysis indicated that changes

in the HW% were roughly linear and positive whereas

before this period they were decreasing or static in time;

and 3) as explained in Zhang et al. (2005), there is a

theoretical discontinuity between the last year of the

base period (1977) and the first year of the out-of-base

period (1978). However, preliminary examination of

this impact on various 1948–2015 time series suggested

the impacts were insignificant. Linear trends were cal-

culated for the entire calendar year, only during the

summer months (June–August), and for individual

months. The latter were examined in order to un-

derstand the seasonality of heat wave trends.

The trends were estimated using the Sen slope estima-

tion method within the Mann–Kendall test (Mann 1945;

Kendall 1975), which is commonly used to estimate trends

of extremes because it handles nonparametric distribu-

tions well. Simultaneously, the Kendall’s tau test for the

significance with 95% confidence (0.05 significance level)

was calculated to objectively diagnose significance, albeit

samples based on the aforementioned heat wave re-

quirements (e.g., related to thresholds and duration) did

not have overly nonnormal distributions (not shown).

The statistical relationships between Tmin, Tmax, and

Tmnx heat waves were examined in several different

ways. Pearson correlation coefficients were calculated

between the nationwide HW% of different heat wave

types’ time series. The spatial overlap of Tmin and Tmax

heat waves was explicitly examined by calculating the

portion (spatial percentage) of each date’s Tmin/Tmax

heat waves that also qualified as Tmnx. This percentage is

herein referred to as the ‘‘overlap percentage.’’ The me-

dian overlap percentage was calculated every year and

subsequently examined for changes over the 1948–2015

period. Additionally, on all dates with nonzero heat wave

coverage of the United States, the correlation between

Tmin and Tmax heat wave spatial patterns was calcu-

lated. The median correlation coefficient was then cal-

culated every year and examined for changes in time.

Last, at each grid cell the percentages of the Tmin and

Tmax dates during the 1948–2015 period that were Tmnx

were also calculated. This quantity is herein referred to as

the ‘‘overlap frequency’’ of a location. The similarity of

the overlap frequency spatial pattern with the diurnal

temperature range climate normals was also examined.

While not a focus of this study, the sensitivity of

the HW% trends and time series to a wide range of

factors were examined. Heat waves were diagnosed

with an alternative definition: two consecutive dates

with standardized anomalies of 1.5 or greater and the

1538 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:25 PM UTC



opposing/simultaneous daily extreme being greater than

the climate base sample mean. Another test of the sen-

sitivity was by marginally altering the time period the

linear trends were calculated over (1978–2015). In addi-

tion to the Mann–Kendall method, trends were also cal-

culated using an ordinary least squares regressionmethod.

To test the sensitivity of the results the trends were cal-

culated with the BEST dataset as well as the ungridded

version of the TopoWx dataset.

Sensitivity of theHW% trends to the climate base time

period was also examined. The analysis was mostly un-

dertaken on what referred to as a ‘‘fixed’’ climate base

period, which encompassed the first 30 years of the

TopoWx dataset (1948–77). A second type of climate

base period was also utilized: a ‘‘trailing’’ base period,

which comprised the 30 years preceding any given year.

Therefore, the earliest potential date of percentiles based

on a trailing base period was in 1978 (i.e., just after the

first 30 years of the dataset). This is reminiscent of the

optimal climate normals used at the NWS’s Climate

Prediction Center (Huang et al. 1996), which are calcu-

lated from a 10-yr trailing climate base period, and are a

better predictor of the next year than climate normals

using the traditional (fixed) climate base period.

3. Results

The percent of the year-round dates over the entire

1948–2015 period that had nonzero heat wave spatial

coverage (nationally) was 91% for Tmin-type heat waves,

89% for Tmax waves, and 70% for Tmnx waves. The

median coverage of theUnited States experiencing a heat

wave on any given date was 3.2% for Tmin-type heat

waves, 3.1% for Tmax waves, and 0.4% for Tmnx waves.

The 90th percentile of that coverage was 18% for

Tmin-type heat waves, 19% for Tmax waves, and 8% for

Tmnxwaves.ThemaximumHW%onasingledatewas82%

for Tmin-type heat waves (2 January 1997), 63% for Tmnx

waves (same date), and 73% for Tmax waves (30 October

1950). During the peak of the notorious 1995 heat wave that

hit Chicago (i.e., 13 July), 20% of the United States was

covered in a Tmin-type heat wave, 14% was covered in a

Tmnx wave, and 24% was covered in a Tmax wave.

The national climatological normals of the year-round

HW% during the 1948–77 climate base period were 4.8%

(18 days) for Tmin heat waves, 5.6% (21 days) for Tmax

waves, and 1.9% (7 days) for Tmnx waves (Table 1).

During a brief period of general heat wave inactivity and

stable statistics (1964–75), the mean values were slightly

less, at 4.6% (17 days) for Tmin heatwaves, 4.8% (17 days)

for Tmax waves, and 1.6% (6 days) for Tmnx waves.

However, by the most recent 30-yr period the same cli-

matological normals had increased to 8.5% (31 days) for

both Tmin- and Tmax-type heat waves and to 3.6%

(13 days) in the Tmnx waves. Monthly climatological

normals indicated modest variability throughout the year

(Table 1). Notably, in the earlier 30-yr period, winter had

larger TminHW%values, but in the later period, summer

had the largestHW%values. That seasonal cycle ofHW%

climate normals was less conspicuous for the TmaxHW%,

but month-to-month variability still existed.

Time series spanning the study period of the national

year-round HW% (Fig. 1a) indicated the background

level mildly decreased from 1948 through the mid-1960s

and was then followed by a period of general inactivity

until the mid- to late 1970s. A continual and substantial

increase was evident after that period until 2015. The

HW% in these time series was calculated using percen-

tiles calculated against the fixed climate base period (i.e.,

always 1948–77). Sensitivity to season and heat wave type

existed and included the decreases in year-round Tmax

HW% in the earlier part of the time series being more

conspicuous than they were for the Tmin HW%. In-

creases in HW% after the stagnation in the early 1970s

were similar for Tmax and Tmin on a year-round basis,

but during the summer months Tmin HW% increased

more than Tmax HW% (Fig. 1b). That difference in in-

crease since 1978 was statistically significant at the 95%

confidence level (not shown). During the summer

months, the HW% increase for all heat wave types was

larger than in other seasons (not shown) and year-round.

These temporal changes in national HW% were

similar to those in the national daily maximum and

minimum temperature mean values (Fig. 2), including

almost every notable feature. Correlation coefficients

between the Tmin (Tmax) HW% time series and mean

Tmin (Tmax) temperatures were strongly positive (e.g.,

depending on seasonal focus, 0.89–0.92 in Tmin and

TABLE 1.Mean year-round andmonthly Tmin, Tmnx, and Tmax

HW%values during three periods. Values listed first correspond to

the 1948–77 period, those listed second correspond to the 1964–75

period, and those listed third correspond to the 1986–2015 period.

Tmin Tmnx Tmax

Year-round 4.8, 4.6, 8.5 1.9, 1.6, 3.6 5.6, 4.8, 8.5

Dec 5.0, 5.2, 6.5 1.9, 1.9, 2.6 5.5, 5.0, 7.1

Jan 5.3, 4.7, 6.8 2.3, 1.8, 3.0 6.0, 4.9, 8.3

Feb 5.2, 5.4, 8.0 2.2, 2.2.3.7 5.9, 5.9, 9.6

Mar 4.9, 4.5, 8.0 1.9, 1.6, 3.8 5.7, 5.0, 9.6

Apr 4.9, 4.8, 9.0 1.9, 1.8, 4.3 5.7, 5.4, 9.7

May 4.9, 3.8, 8.7 2.0, 1.3, 3.9 5.7, 4.3, 8.5

Jun 4.9, 4.1, 10.3 2.0, 1.5, 4.5 5.7, 4.8, 9.3

Jul 4.7, 4.3, 11.0 1.9, 1.6, 4.6 5.6, 4.8, 9.3

Aug 4.6, 4.4, 10.8 1.7, 1.5, 4.2 5.5, 4.3, 9.0

Sep 4.5, 4.1, 8.8 1.5, 1.2, 3.1 5.5, 3.9, 7.4

Oct 4.6, 4.3, 7.0 1.5, 1.1, 2.4 5.4, 3.9, 6.9

Nov 4.8, 4.7, 6.4 1.7, 1.5, 2.4 5.5, 4.6, 6.7
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0.86–0.89 in Tmax). Conversely, similar comparisons

with the national daily maximum and minimum tem-

perature variance (not shown) values showed little to no

relationship, and correlation coefficients calculated

were weak and even negative (e.g., from20.31 to10.13

in Tmin and from 20.24 to 10.24 in Tmax).

As compared with the 1948–2015 period, changes since

1978 were roughly linear (Fig. 1). All linear trends of

year-round national HW% during the 1978–2015 period

were positive. All three types of heat waves displayed

national trends in year-round HW% that were statisti-

cally significant. In an absolute sense the magnitudes of

the national trendswere strongest in TminHW%(Table 2),

and Tmax trends were very similar (1.38 and 1.31 decade21,

respectively). Relative to the climatological normals, how-

ever, the Tmnx HW% increased the most (a 42% increase

per decade as compared with 27%–30%).

Spatially, positive HW% linear trends (Table 3)

dominated the CONUS. There were no grid cells with

significant negative trends in year-round HW%. The

percent of cells with negative trends was largest in Tmax

heat waves (4%–6%). The percent of exactly zero trends

was largest in the Tmnx heat waves, particularly in the

summer months (64% vs 9%). When trends were de-

termined via ordinary least squares methodology, ex-

actly zero trends were mostly replaced with small

positive trends (not shown). Of the positive trends, Tmin

had both the largest percentage of positive trends (89%–

98%) and was the only heat wave type to have a ratio

of significant-to-insignificant trends consistently over

unity. Conversely, Tmax consistently had the significant-

to-insignificant ratios under unity.

The spatial patterns of year-round HW% linear

trends (Fig. 3) indicated that, while variability associ-

ated with trends of different heat waves types existed,

the strongest signal for positive trends focused in a re-

gion spanningmost of the northern IntermountainWest,

northern Rockies, central Rockies, southern Rockies,

California, Southwest, and southern ‘‘HighPlains’’ regions.

Less prominent positive trends were located in parts of

Florida, the mid-Atlantic, the Great Lakes, northern por-

tions of the upper Mississippi Valley, southern parts of the

southernGreat plains, and the lowerMississippiValley.An

area of decreasing and/or insignificant trends focused on

FIG. 1. Time series of nationwide HW% values for three types of heat waves. Annual values

(solid lines with markers) and 11-yr runningmeans (dotted lines, nomarkers) are both provided for

(a) year-round HW%, (b) summertime HW%, and (c) summertime HW% in the BEST dataset.
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the northern Great plains and extended southeast into the

central Great plains, middle Mississippi Valley, and the

Ohio and Tennessee Valleys. For Tmnx and Tmax HW

types, this weakness in the trends of HW% included some

parts of the southeastern United States. These general

spatial patterns were well supported by maps of trends

calculated via ordinary least squares regression (e.g., maps

not shown but correlation coefficients are 0.96 and 0.94 for

Tmin and Tmax HW%, respectively).

The national HW% linear trends displayed the

largest magnitudes in the summer months (Table 2).

This was most evident for the Tmin heat waves, where

the magnitudes were nearly double that of the annual

trends. There was no season that displayed exception-

ally weak trends, but March and January both ex-

hibited weak trends for most heat wave types. Each

heat wave type had exactly 6 months with statistically

significant trends. The summer months plus September

FIG. 2. Time series of nationwide anomaly values for both daily maximum and minimum

temperatures. Annual values (solid lines withmarkers) and 11-yr runningmeans (dotted lines, no

markers) are both provided for (a) year-round and (b) summertime. Year-round mean values

were 17.58 and 4.38C for dailymaximum andminimum temperatures, respectively. Summermean

values were 28.78 and 14.48C for daily maximum and minimum temperatures, respectively.

TABLE 2. Nationwide linear decadal trends in HW% during the 1978–2015 period. Values in parentheses are normalized by the mean

1964–75 period values. Statistical significance is indicated by boldface font.

1948–77 climate base Trailing climate base

Tmin Tmnx Tmax Tmin Tmnx Tmax

Year-round 1.38 (0.30) 0.69 (0.42) 1.31 (0.27) 0.36 (0.08) 0.17 (0.10) 0.24 (0.05)

Dec 0.72 (0.14) 0.44 (0.23) 0.81 (0.16) 0.44 (0.09) 0.22 (0.11) 0.24 (0.05)

Jan 0.15 (0.03) 0.34 (0.19) 1.11 (0.23) 20.20 (20.04) 0.08 (0.41) 0.21 (0.04)

Feb 0.55 (0.10) 0.60 (0.27) 1.51 (0.26) 20.04 (20.01) 0.17 (0.08) 0.34 (0.06)

Mar 0.03 (0.01) 0.25 (0.16) 0.74 (0.15) 20.57 (20.13) 20.18 (20.11) 20.27 (20.05)

Apr 0.78 (0.16) 0.56 (0.31) 1.33 (0.24) 20.17 (20.04) 20.07 (20.04) 0.22 (0.04)

May 1.02 (0.27) 0.54 (0.42) 1.00 (0.23) 0.04 (0.01) 0.05 (0.04) 0.17 (0.04)

Jun 2.08 (0.51) 0.88 (0.58) 1.31 (0.27) 0.48 (0.11) 0.17 (0.11) 0.23 (0.05)

Jul 2.67 (0.62) 1.08 (0.67) 1.60 (0.33) 0.69 (0.16) 0.31 (0.19) 0.42 (0.09)

Aug 2.87 (0.65) 0.99 (0.66) 1.27 (0.29) 0.84 (0.19) 0.19 (0.13) 0.15 (0.03)

Sep 1.76 (0.43) 0.53 (0.46) 0.88 (0.22) 0.55 (0.13) 0.09 (0.08) 0.13 (0.03)

Oct 0.97 (0.23) 0.46 (0.42) 0.89 (0.23) 0.38 (0.09) 0.11 (0.10) 0.30 (0.08)

Nov 0.83 (0.18) 0.43 (0.29) 0.84 (0.18) 0.53 (0.11) 0.22 (0.15) 0.38 (0.08)
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(i.e., June–September) were consistently significant

across the various heat wave types.

Despite having larger national (positive) HW% trends

in the summertime, the spatial coverage of positive trends

over theUnited States was less dominated than theywere

in year-round trends (Table 3). This was more than offset

by themagnitude increases.Most notably, the decrease in

spatial coverage was due to an increase in the percent of

exactly zero trends (Table 3). This increase (in zero-

magnitude trends) may have been a response within the

trend estimation method to a relatively large amount of

variability relative to the change in the backgroundmean.

Summertime Tmin HW% had roughly double the cov-

erage of significant positive trends as the second highest

heat wave type (55% versus 27% for Tmax). Tmax heat

waves had the highest percent of negative trends (3.7%),

and the summertime heat waves even had grid cells with

significant negative trends (0.7%).

The spatial patterns in linear trends ofHW%during the

summertime (Fig. 4) displayed patterns similar to the

year-round HW% trends. The region of positive trends in

the western United States again displayed the strongest

trends, and the northern Great plains displayed de-

creasing trends or no trends. The range in the trends was

substantially larger in the summertime than it was in the

year-round trends. The trends in the Tmnx events dis-

played an exceptionally large portion of the United States

with no trend at all. This area of zero-value trends spanned

from the northern to southern Great plains and almost all

areas east, outside of parts of Florida, the Carolinas, and

themiddleMississippiValley.Correspondingmaps of trends

calculated via ordinary least squares regression confirmed

these spatial patterns (e.g., correlation coefficients of

0.95 and 0.72, for Tmin and Tmax HW%, respectively)

but mostly replaced zero-value trends with very small

positive trends. The differences with ordinary least squares

regression patterns were greater in the Tmax HW%.

Spatial patterns of 1978–2015 trends in the mean daily

maximum temperatures (Fig. 5) were more similar

with those in Tmax HW% (e.g., correlation coefficients

0.70–0.79) than patterns in the mean daily minimum

temperatures were similar to Tmin HW% (correlation

coefficients 0.37–0.39). To a lesser extent, the opposite

was true for the variance [i.e., more similarity in daily

minimum temperatures (correlation coefficients 0.43–

0.64) than in the daily maximum temperatures (corre-

lation coefficients 0.30–0.50)]. Overall, the trends in

HW% were substantially closer aligned with trends in

the mean (Fig. 5; typical correlation coefficient around

0.55) than they were with trends in the variance (not

shown, but typical correlation coefficient around 0.35).

The temporal correlation coefficients of the national

HW% over the 1948–2015 period (as seen in Fig. 1), in

both the summer and year-round, displayed very strong

positive (0.94–0.96) correlations between Tmin-/Tmax-

and Tmnx-type heat waves. The correlations between

Tmax- and Tmin-type heat waves were weaker but still

strongly positive (;0.87). The median overlap percent-

age in the 1948–2015 period was roughly 19% and 26%,

respectively, for year-round and summertime heat waves.

However, the values of those overlap percentages no-

ticeably changed through time (Fig. 6a). Although there

was large year-to-year variability, there also was a mild

TABLE 3. Percentage of the CONUS with various types of linear

trends. The first value represents the Tmin heat wave type, the

second represents the Tmnx type, and the third represents the

Tmax type. For clarity, extra precision is given to values under 1%.

Year-round Summertime

Positive significant 53, 38, 42 55, 26, 27

Positive insignificant 45, 51, 49 34, 10, 30

No trend 1, 9, 4 11, 64, 39

Negative insignificant 1, 2, 6 0.2, 0.0, 3

Negative significant 0.0, 0.0, 0.0 0.0, 0.0, 0.7

FIG. 3. Maps of the sign, magnitude, and statistical significance of

the linear decadal trends in year-round HW% over the 1978–2015

period. Heat waves of the (a) Tmin, (b) Tmnx, and (c) Tmax types

are displayed. Statistical significance is indicated with hatching.
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decrease in the mean from 1948 until the mid- to late

1960s and then a conspicuous increase through 2015. The

recent increase was substantial in the sense that it more

than doubled from ;12% in 1970 to 27% in 2015. This

same behavior was seen in the percentage of Tmin/Tmax

dates that included a nonzero percentage of Tmnx (not

shown). Changes over time in the national mean daily

diurnal temperature range failed to have a meaningful

relationship with the aforementioned changes in overlap

percentage (negative correlations anticipated, but corre-

lation coefficients were positive at 0.35–0.36). The mean

values of the spatial correlation coefficients calculated

between simultaneous daily Tmax and Tmin heat wave

patterns across the United States over the 1948–2015

period were weak at 0.22 and 0.28 for year-round and

summertime values, respectively. Themedian correlation

coefficient changed through time in a highly similar way

to the median spatial overlap percentage (Fig. 6b), albeit

to a slightly lesser degree (e.g., the increase from 1970 to

2015 was not quite a doubling).

The overlap frequencies (Fig. 7a), were calculated on

samples that usually totaled to about 1100 in size (i.e.,

dates of Tmin- or Tmax-type heat waves). West of the

Rockies, the overlap frequencies were usually high. A

region of generally low overlap frequencies covered the

northern and centralGreat plains. A regionwith generally

high overlap frequencies extended from the upper and

middleMississippiValley throughparts of the centralGreat

plains and into southern Great plains. Comparisons be-

tween overlap frequency and the 1948–2015 period mean

diurnal temperature range indicated an overall weak but

complex relationship. For instance, while a 0.00 correlation

coefficient was calculated nationwide, regions of both pos-

itive and negative relationships appeared to exist (Fig. 7b).

In addition to confirming the results with trends cal-

culated with ordinary least squares regression, the re-

sults were also reanalyzed with the BEST dataset, with

the alternative definition of a heat wave (e.g., standard

deviations instead of percentiles), with an ungridded

version of the TopoWx dataset (not shown), and over

slightly different time periods. While the sensitivity to

these aforementioned variables was low, the largest

sensitivity was to the time period (i.e., start and end

date). For instance, the time series of national HW%

was not conspicuously sensitive to dataset (Fig. 1), albeit

the beginning of the increase does start a few years

earlier in the BEST dataset. The spatial pattern of

summer HW% trends calculated over the 1978–2013

period, using ordinary least squares regression, on the

BEST dataset, and with a heat wave definition based on

the standard anomaly (Fig. 8) had a similar spatial pat-

tern to the results of the primary analysis (Fig. 4).

FIG. 5. Maps of the linear decadal trends in year-round mean

daily air temperatures. Displayed are trends in both (a) daily

minimum temperatures and (b) daily maximum temperatures.

Statistical significance is indicated with hatching.

FIG. 4. As in Fig. 3, but for summertime HW% over the 1978–

2015 period.
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The major sensitivity was to the climate base period.

The trends in the national HW% were substantially

smaller when diagnosed against the trailing, as opposed

to a fixed, climate base period (Table 2). The trailing

base period trends in the year-round HW% Tmin and

Tmax were an order of magnitude less than their (fixed

base period) counterparts, albeit the Tmnx reductions

were less pronounced. Negative trends even existed for

some months and totaled to four in the Tmin-type heat

waves, two in the Tmnx waves, and one in the Tmax

waves. Negative trends only existed between themonths

of January and April. Only one instance, Tmin HW% in

August, had statistically significant (positive) trends.

4. Discussion and conclusions

This analysis of the changes in the heat wave per-

centage (HW%) was the first to utilize a homogenized

climate dataset (TopoWx) and was therefore significant

to the understanding of the changes in heat waves.

FIG. 6. Time series of nationwide (a) median percent of overlap between daily simulta-

neous Tmin/Tmax heat wave patterns and (b) median correlation coefficient between daily

simultaneous Tmin/Tmax heat wave patterns. Both annual values and 11-yr running averages

are provided for both year-round HW% and summertime HW%.
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The findings herein confirmed several previous studies’

conclusions as well as produced an array of new conclu-

sions. Foremost, it confirmed that heat wave prevalence

mildly declined nationally prior to the 1970s, but since the

1970s a steady and substantial increase occurred. Increases

observed in the most recent decade confirm the absence

of a warming pause in extreme temperatures, as noted by

Seneviratne et al. (2014). Increases in HW% since the

1970s were clearly seen in the time series of nationwide

HW%, and they mirrored changes in the mean tempera-

tures. Also, the portion of the United States that experi-

enced increases as compared with decreases in HW%

since 1978 was overwhelmingly in favor of the increases;

statistically significant negative trends were nearly non-

existent. These conclusions confirm well-established mild

decreases (nationally) in nighttime and daytime hot tem-

peratures/heat waves from the late 1940s to the 1970s (e.g.,

Oswald and Rood 2014; DeGaetano and Allen 2002;

Alexander et al. 2006). Similarly, they confirm a previously

observed substantial increase since the late 1970s (e.g., Smith

et al. 2013; Oswald and Rood 2014; Habeeb et al. 2015).

Since this increase was substantially larger than the pre-

ceding (e.g., 1948–77) decreases, these results also confirmed

increasing trends in heat waves since the mid-twentieth

century (e.g., Alexander et al. 2006; Allen and Sheridan

2016). It is thought that the utilization of a reanalysis-based

dataset in the Smith et al. (2013) study is the reason the re-

sulting spatial patterns do not agree with one another.

Examination of the magnitude and spatial coverage of

linear trends of the 1978–2015 period in the nationwide

HW% for all three types of heat waves for each month

clearly demonstrated that the increase since the late 1970s

in theHW%was greatest in the summermonths and least

in Tmax-type heat waves. We know of no other studies

that have examined the seasonality of heat wave trends.

Increases dominated by summer months could be un-

expected in the context of greenhouse gas warming;

however, the bulk of the temperature increase due to

greenhouse gases occurs in the cold tail of the distribu-

tion. When linear trends were normalized by climate

normals, Tmnx-type heat waves increased the most, but

the absolute trends were largest in Tmin-type heat waves.

A greater increase in Tmin than Tmax is supported by

almost all known studies (Perkins 2015). Results agreed

with the Oswald and Rood (2014) analysis, which used a

crudely assembled homogenized dataset, that the nor-

malized trends of the Tmnx-type heat waves in the

FIG. 7. Maps of the (a) pattern of the percentage of the May–

September dates considered either a Tmin or Tmax heat wave

during the 1948–2015 period that also qualified as a Tmnx heat

wave and (b) mean diurnal temperature range during the May–

September months during the 1948–2015 period.

FIG. 8.Maps of the sign, magnitude, and statistical significance of

the linear decadal trends in summertimeHW%over the 1978–2013

period. These heat waves were based on standard deviations and

calculated from the BEST dataset. Heat waves of the (a) Tmin

type, (b) Tmnx type, and (c) Tmax type are displayed. Statistical

significance is indicated with hatching.
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United States were the largest of the three types (and

Tmin was largest when they are not normalized).

Geographically, the largest increases since the 1970s

were found in the western United States (not including

the Pacific Northwest or northern Rockies), and the

weakest were found in an area that centered on the

northern Great plains but extended often through

the central Great plains and into the middle Mississippi

Valley; sometimes this region extended into the Ohio

and Tennessee Valleys and even the southeastern

United States. This feature existed in both maps of year-

round and summer season trends. Such a feature agrees

with a few other studies indicating a warming hole

stemming from the northern Great plains (Oswald and

Rood 2014; Allen and Sheridan 2016). However, many

studies do not confirm such a pattern (Peterson et al.

2013; Alexander et al. 2006; Grotjahn et al. 2016; Meehl

et al. 2012; Brown et al. 2008; Donat et al. 2013;

Portmann et al. 2009; Frich et al. 2002) and instead de-

pict the warming hole to be in the southeastern United

States. These studies all had start dates of 1950, which

suggests the warming hole shifted toward the northern

Great plains in more recent years. Notably, any period

ending in recent years with a start date of 1950 includes

nonlinear changes. Studies of trends in extreme heat

usually depict a general east–west dipole of trends

(Brown et al. 2008; Donat et al. 2013; Portmann et al.

2009; Alexander et al. 2006; Frich et al. 2002), and our

results confirm such a pattern exists in the trends of daily

maximum–based heatwaves.Many studies also indicate a

local maximum of increase in the western and south-

western United States for trends of extremes based on the

daily minimum temperature (Brown et al. 2008; Portmann

et al. 2009; Alexander et al. 2006; Donat et al. 2013). This

study confirms such a feature but also suggests a larger

region/signal as well as an extension of this feature into

both the daily maximum and combined daily maximum

and minimum (Tmnx)-based heat wave trends.

This study confirmed that changes in HW%were very

similar to changes in the statistical means of the corre-

sponding daily extreme temperature (e.g., Hansen et al.

2012; McKinnon et al. 2016; Donat and Alexander

2012). This was evidenced by comparisons of similarity

with both the mean and variance of daily temperature

extremes and the national HW% through time, as well

as through comparisons of spatial maps of increase.

More similarity with HW% existed with the statistical

mean than the variance. There were stronger relation-

ships between HW% and the statistical mean during the

daytime and between HW% and the statistical variance

during the nighttime.

The results of this analysis were not sensitive to a wide

range of factors, for instance, dataset or trend estimation

methodology. However, the increases since the 1970s

were only significant if heat waves were diagnosed rel-

ative to a fixed climate base period. This was demon-

strated in comparisons of the 1978–2015 linear trends of

heat waves based on percentiles relative to both fixed

climate bases and trailing climate bases.We are unaware

of any previous examination of the sensitivity to climate

basemethodology.We recognize this findingmay not be

relevant to understanding the physical changes of the

climate system or with respect to the exceedances of

absolute thresholds. However, from an epidemiological

standpoint, it may be extremely important. Studies in

the epidemiological field are in agreement that the re-

lationship between temperature percentiles using a fixed

climate base and health statistics has weakened with

time (e.g., Sheridan and Dixon 2017). This supports the

idea that the population becomes acclimated to hotter

weather over time. Extreme heat with respect to a

trailing base period should be evaluated for a relation-

ship to health statistics that does not decline over time.

The likelihood of Tmin and Tmax heat waves inter-

secting (i.e., Tmnx heatwaves) was dynamic through time

and space. The temporal pattern on the national level

showed a decrease prior to the mid-1960s and a sub-

sequent increase. Chen and Li (2017) also observed a

temporal increase in the probability of Tmin/Tmax

overlap since the 1970s in China. The temporal pattern

observed in this study was similar to national trends in

atmospheric moisture content (Brown and DeGaetano

2013). This could potentially be linked to the relatively

larger increases in HW%of heat wave types with respect

to both daily maximum and minimum temperatures

(Tmnx). It was, however, not related to temporal patterns

of change in the diurnal temperature range. Studies that

advance the knowledge of the temporal changes in the

relationships betweenTmin, Tmax, andTmnx heatwaves

in the United States would be beneficial. The likelihood

of simultaneous Tmin- and Tmax-type heat waves also

demonstrated spatial variability, as seen in maps of the

overlap frequency of 1948–2015. These findings echo

those of Chen and Li (2017) that meaningful spatial

variability exists in the likelihood for a Tmnxheat wave to

be experienced instead of a single extremum (Tmin or

Tmax) heat wave. The relationship between overlap

frequency and the mean diurnal temperature range was

not meaningful. Knowledge concerning the drivers of

overlap frequency, related to either weather or surface

conditions, should be further investigated.
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